

MIT-WPU researchers develop patented cooling system for safer EV batteries

Representational image (Image: News18)

Mumbai, Nov 26 (PTI) Researchers at MIT World Peace University (MIT-WPU), Pune, have claimed to have developed a new patented cooling system that can help electric vehicle batteries stay cooler, safer, and more efficient.

The hybrid cooling system, which was granted a patent under the Indian patent "System for Thermal Management of Battery of Vehicle", is

designed to improve both performance and safety.

The system addresses the challenges posed by India's high-temperature conditions and a spike in EV fire incidents, MIT-WPU said in a statement on Wednesday.

The hybrid passive cooling design combines high-efficiency heat pipes with a specially engineered nano fluid, offering a pump-free, energy-efficient alternative to conventional EV battery cooling systems.

"In an environment such as India's, with high ambient temperatures and rapidly growing EV usage, the challenge isn't just about performance but is also about safety first. Our passive hybrid cooling system ensures that the battery pack remains within safe thermal limits without drawing power from the vehicle's system, thereby enhancing both reliability and operational efficiency," MIT-WPU Department of Mechanical Engineering Associate Professor Dr Vaibhav Deshmukh, who is one of the researchers, said.

MIT-WPU develops passive hybrid cooling system for EV batteries

MUMBAI: (Nov 26) Researchers at Pune-based MIT World Peace University (MIT-WPU) have developed a patented passive hybrid cooling system, which enhances thermal management in electric vehicle (EV) batteries, preventing them from overheating, a statement said on Wednesday.

The patented passive hybrid cooling system, designed to improve performance and safety of EV batteries, addresses the challenges posed by India's high-temperature conditions and rising EV fire incidents, it said.

Unlike traditional cooling systems, this patented technology removes heat rapidly using natural convection and phase-change processes rather than forced circulation, according to the statement.

EV Battery Cooling: MIT-WPU Hybrid System

Mumbai, Nov 26 (PTI) Researchers at Pune-based MIT World Peace University (MIT-WPU) have developed a patented passive hybrid cooling system, which enhances thermal management in electric vehicle (EV) batteries, preventing them from overheating, a statement said on Wednesday.

The patented passive hybrid cooling system, designed to improve performance and safety of EV batteries, addresses the challenges posed by India's high-temperature conditions and rising EV fire incidents, it said.

Unlike traditional cooling systems, this patented technology removes heat rapidly using natural convection and phase-change processes rather than forced circulation, according to the statement.

By maintaining stable battery temperature, the system significantly improves battery lifespan, charging efficiency and user safety, it said, adding that the team of researchers designed a hybrid passive cooling architecture that combines high-efficiency heat pipes with a specially engineered nano-fluid, offering a pump-free, energy-efficient alternative to conventional EV battery cooling systems.

"In an environment, such as India's high ambient temperatures and rapidly growing EV usage, the challenge isn't just about performance; it is about safety first.

"Our passive hybrid cooling system ensures that the battery pack remains within safe thermal limits without drawing power from the vehicle's system, thereby enhancing both reliability and operational efficiency," said Vaibhav Deshmukh, Associate Professor at the Department of Mechanical Engineering, MIT-WPU.

The global EV battery thermal management systems (BTMS) market, estimated at approximately USD 5.41 billion in 2024, is projected to reach around USD 29.09 billion by 2030, reflecting a strong growth trajectory driven by demand for longer range, faster charging and improved safety standards, as per industry estimates.

In India, the EV-battery cooling systems market is projected to grow from about USD 138 million in 2025 to nearly USD 470 million by 2034, while the broader Battery Management System (BMS) market is expected to rise from approximately USD 199 million in 2024 to USD 8.39 billion by 2035, it said.

MIT-WPU develops passive hybrid cooling system for EV batteries

Mumbai, Nov 26 (PTI) Researchers at Pune-based MIT World Peace University (MIT-WPU) have developed a patented passive hybrid cooling system, which enhances thermal management in electric vehicle (EV) batteries, preventing them from overheating, a statement said on Wednesday.

The patented passive hybrid cooling system, designed to improve performance and safety of EV batteries, addresses the challenges posed by India's high-temperature conditions and rising EV fire incidents, it said.

Unlike traditional cooling systems, this patented technology removes heat rapidly using natural convection and phase-change processes rather than forced circulation, according to the statement.

By maintaining stable battery temperature, the system significantly improves battery lifespan, charging efficiency and user safety, it said, adding that the team of researchers designed a hybrid passive cooling architecture that combines high-efficiency heat pipes with a specially engineered nano-fluid, offering a pump-free, energy-efficient alternative to conventional EV battery cooling systems.

"In an environment, such as India's high ambient temperatures and rapidly growing EV usage, the challenge isn't just about performance; it is about safety first.

"Our passive hybrid cooling system ensures that the battery pack remains within safe thermal limits without drawing power from the vehicle's system, thereby enhancing both reliability and operational efficiency," said Vaibhav Deshmukh, Associate Professor at the Department of Mechanical Engineering, MIT-WPU.

Chronicle

Researchers at MIT-WPU Develop Hybrid Nanofluid Cooling System to Prevent EV Battery Overheating and Fires

Patent-backed hybrid cooling system combines nanofluids and heat pipes to prevent battery overheating and reduce EV fire risks in Indian conditions.

Pune, 26 November 2025: Researchers at MIT World Peace University (MIT-WPU), Pune have developed a patented passive hybrid cooling system—granted under the Indian patent "System for Thermal Management of Battery of Vehicle" (Patent No. 202121029238)—that significantly enhances thermal management in electric vehicle (EV) batteries. Designed to improve both performance and safety, the system addresses the challenges posed by India's high-temperature conditions and rising EV fire incidents.

The research team includes Dr. Vaibhav Deshmukh, Associate Professor, Department of Mechanical Engineering; Dr. S. Radhakrishnan, Professor Emeritus & Director Research, Department of Materials Science and Engineering; and Dr. Vaidehi Deshmukh, Assistant Professor, Department of Electrical and Electronics Engineering. They designed a hybrid passive cooling architecture that combines high-efficiency heat pipes with a specially engineered nanofluid, offering a pump-free, energy-efficient alternative to conventional EV battery cooling systems. What makes this patented innovation particularly unique is its fully passive hybrid cooling mechanism that operates entirely through natural convection and phase-change processes—without the use of pumps, fans or any additional electrical power. The integration of a custom-engineered nanofluid, enhanced with thermally conductive nanoparticles and low-boiling-point liquids, enables rapid heat extraction from battery hotspots. When paired with high-efficiency heat pipes, the system maintains stable thermal conditions even in extreme environmental temperatures, providing a high-reliability, energy-independent and inherently safer alternative to current air- or liquid-based EV cooling technologies, making it especially suited to India's climatic conditions.

एमआयटी-डब्ल्यूपीयूने ईव्ही बॅटरीसाठी पॅसिव्ह हायब्रिड कूलिंग सिस्टम विकसित केली आहे

- MIT-WPLI ने EV बॅटरीसाठी हायब्रिड कुलिंग सिस्टम विकसित केली.
- सिस्टम बॅटरीचे तापमान स्थिर ठेवते, आयुष्य वाढवते.
- उच्च तापमानात बॅटरी सुरक्षित ठेवण्यास मदत करते.
- सिस्टम ऊर्जा-कार्यक्षम आणि पंप-मुक्त आहे.

Why it matters: ही तंत्रतान इंक्षी बॅटरींच्या सुरक्षिततेत आणि कार्यक्षमतेत मोठी बाद करू शकते.

एमआइटी: नैनोफ्लूइड कूलिंग सिस्टम विकसित किया

पुणे@पत्रिका. एमआइटी वर्ल्ड पीस इलेक्टिक वाहन की बैटरी के लिए एक नया पैसिव हाइब्रिड कुलिंग सिस्टम विकसित किया है। इसे भारत में सिस्टम फॉर थर्मल मैनेजमेंट ऑफ बैटरी ऑफ व्हीकल के नाम से पेटेंट डॉ. वैदेही देशमुख, असिस्टेंट प्रोफेसर, मिला है, जो ईवी बैटरियों को ठंडा

बनाता है। रिसर्च टीम में डॉ. वैभव देशमुख. मैकेनिकल इंजीनियरिंग डिपार्टमेंट, डॉ एस. राधाकृष्णन, प्रोफेसर एमेरिटस और डायरेक्टर रिसर्च, साइंस एंड इंजीनियरिंग डिपार्टमेंट और इलेक्ट्रिकल रखने की क्षमता को काफी बेहतर इंजीनियरिंग डिपार्टमेंट शामिल हैं।

दैनिक भास्कर

» एमआईटी-वर्ल्ड पीस यूनिवर्सिटी के शोधकर्ता विद्यार्थियों ने किया विकसित हाइब्रिड नैनोफ्लूइड कूलिंग सिस्टम

ईवी की बैटरी नहीं होगी गर्म और न ही लगेगी आग

बिना पंप के काम करता है, पारंपरिक बैटरी की तुलना में कम ऊर्जा खर्च करता है

भारत के मौसम के लिए विशेष रूप से उपयुक्त है

आजकल ई व्हीकल्स का दौर है। महंगे ईंधन की मार से बचने और प्रदेषण से बचने के लिए लोग अब ई व्हीकल्स का रख कर रहे हैं। खासकर ई टव्हीलर इस्तेमाल करनेवालों की संख्या बढ़ रही है। इससे लोगों की जेब पर पड़नेवाली मार कम हो रही है। केवल एक शिकायत है। बैटरी के जल्दी गर्म हो जाने और जलने की। इससे बचाब का तरीका पणे के विद्यार्थियों ने हंह निकाला है। पणे के शोधकर्ताओं ने इलेक्ट्रिक बाहन (ईबी) की बैटरी के लिए नया पैसिव हाइब्रिड कुलिंग सिस्टम विकसित किया है। इसे भारत में सिस्टम फॉर थर्मल मैनेजमेंट ऑफ बैटरी ऑफ व्होंकल (पेटेंट नंबर 202121029238) के नाम से पेटेंट मिला है। जो इलेक्टिक वाहन बैटरियों को ठंडा रखने की क्षमता को काफी बेहतर बनाता है। प्रदर्शन और सरक्षा दोनों को बढ़ाने के उद्देश्य से डिजाइन किया गया यह सिस्टम, भारत के उच्च तापमान वाली जलवाय परिस्थितियों तथा ईवी में आग लगने समाधान प्रदान करता है।

एमअईटी बर्ल्ड पीस यनिवर्सिटी की रिसर्च टीम में डॉ. वैभव देशमख. प्रोफेसर. डिपार्टमेंट: डॉ. एस. प्रोफेसर एमेरिटस और डायरेक्टर रिसर्च, मैटेरियल्स साइंस एंड इंजीनियरिंग डिपार्टमेंट: और डॉ. वैदेही देशमख्य, असिस्टेंट प्रोफेसर, इलेक्टिकल एंड इलेक्ट्रॉनिक्स इंजीनियरिंग डिपार्टमेंट शामिल हैं। इन बच्चों ने ऐसा हाइब्रिड पैसिव कलिंग सिस्टम (आर्किटेक्चर) तैयार किया है जिसमें उच्च क्षमता वाले हिट पाइप्स और विशेष रूप से बनाए गए

नैनोफ्लुइड का उपयोग किया जाता है। यह सिस्टम बिना कन्वेक्शन) और फेज-चेंज प्रक्रिया से काम करती है। पंप के काम करता है और पारंपरिक ईवी बैटरी कुलिंग इसमें विशेष रूप से तैयार किए गए नैनोफ्लुइड में धर्मली तरीकों को तलना में कम ऊर्जा खर्च करते हुए बहुतर कंडिक्टव (ऊष्मा संचालक) नैनोपार्टिकल्स और कम विकल्प प्रदान करता है। पेटेंट किए गए नवाचार की तापमान पर उबलने वाले तस्त मिलाए गए हैं। इससे अतिरिक्त बिजली के केवल प्राकृतिक संवहन (नेचरल - मौसम में भी बैटरी का तापमान स्थिर रखता है।

सबसे खास बात यह है कि इसमें परी तरह पैसिव (बिना बैटरी के ज्यादा गर्म हिस्सों से गर्मी बहत तेजी से बाहर के शीतर रखता है, और इसके लिए याट्न की पॉवर का उपयोग किसी बाहरी ऊर्जा के) हाइब्रिड कुलिंग तकनीक का जिनकलती है। जब इस सिस्टम को उच्च श्रमता वाले हीट नहीं करता, जिससे बेटरी की विश्वस्तीयता और काम करने की की बढ़ती घटनाओं जैसी चनौतियों का प्रभावी अपयोग किया गया है. जो बिना पेंप, पंखे या किसी पाइप्स के साथ उपयोग किया जाता है. तो यह बहुत गर्म क्षमता ढ़ेजों बहुती हैं।

यह हवा के प्रवाह या तरल से ठंडा करने वाली इंबी तकनीकों की तलना में अधिक भरोसेमंद, बिजली पर निभंर न रहने वाला और स्वाभाविक रूप से ज्यादा सरक्षित विकल्प है, जिससे यह भारत के मौसम के लिए विशेष रूप से उपयक्त है। पारंपरिक कलिंग सिस्टम के विपरीत, इस पेटेंट तकनीक में गर्मी को तेजी से बाहर निकालने के लिए बलपर्वक प्रवाह (फोर्स्ड सक्यंलेशन) की बजाय प्राकृतिक हवा के प्रवाह (नेचरल कन्वेक्शन) और फेज-चेंज प्रक्रिया का उपयोग किया जाता है। बैटरी का तापमान स्थिर रखने के कारण यह सिस्टम बैटरी की उम्र बढ़ाने, चार्जिंग की दक्षता संधारने और उपयोगकर्ता की सरक्षा सनिश्चित करने में महत्वपूर्ण भूमिका निभाता है।

भारत जैसे वातावरण में —जहां तापमान अधिक है और ईवी का उपयोग तेजी से बढ़ रहा है। चुनौती सिर्फ प्रदर्शन की नहीं है, बरिक सबसे पहले सरक्षा सनिष्टियत करने की है। हमार पैरिव हाइब्रिड कुलिंग सिस्टम बैटरी को सरक्षित तापमान

- **डॉ. वैभव देशमख,** एसोसिएट प्रोपेसर

इलेक्ट्रिक व्हीकल की बैटरी को गर्म होने और आग से बचाने का सिस्टम भारत में हुआ तैयार, ऐसे करेगा काम

संबेप: पुणे के शोचकर्ताओं ने इलेक्ट्रिक वाहन (EV) की बैटरी के लिए एक नया पैसिव हाइब्रिड कूलिंग सिस्टम विकसित किया है, इसे भारत में "सिस्टम फॉर थर्मल मैनेजमेंट ऑफ बैटरी ऑफ ट्वीकल" (पेटेंट नंबर 202121029238) के नाम से पेटेंट मिला है- ...

MIT वर्ल्ड पीस चूनिवर्सिटी (MIT-WPU), पुणे के शोधकर्ताओं ने इलेक्ट्रिक वाहन (EV) की बेटरी के लिए एक नया पैसिव हाइब्रिड कूलिंग सिस्टम विकसित किया है- इसे भारत में "सिस्टम फॉर धर्मल मैनेजमेंट ऑफ बेटरी ऑफ व्हीकल" (पेटेंट नंबर 202121029238) के नाम से पेटेंट मिला है- जो इलेक्ट्रिक वाहन (EV) बेटरियों को ठंडा रखने की क्षमता को काफी बेहतर बनाता है। प्रदर्शन और सुरक्षा दोनों को बढ़ाने के उद्देश्य से डिज़ाइन किया गया यह सिस्टम, भारत के उच्च तापमान वाली जलवायु परिस्थितियों तथा EV में आग लगने की बढ़ती घटनाओं जैसी चुनोतियों का प्रभावी समाधान प्रदान करता है।

रिसर्च टीम में डॉ. वैभव देशमुख, एसोसिएट प्रोफेसर, मेकेनिकल हुंजीनियरिंग डिपार्टमेंट; डॉ. एस. रायाकृष्णन, प्रोफेसर एमेरिटस और डायरेक्टर रिसर्च, मेटेरियल्स साइंस एंड इंजीनियरिंग डिपार्टमेंट; और डॉ. वैदेही देशमुख, असिस्टेंट प्रोफेसर, इलेक्ट्रिकल एंड इलेक्ट्रॉनिक्स इंजीनियरिंग डिपार्टमेंट शामिल हैं। उन्होंने एक ऐसा हाइब्रिड पैसिव कूलिंग सिस्टम (आर्किटेक्चर) तैयार किया है जिसमें उच्च क्षमता वाले हींट पाइंप्स और विशेष रूप से बनाए गए नेनीपलूइड का उपयोग किया जाता है, यह सिस्टम बिना पंप के काम करता है और पारंपरिक EV बैटरी कूलिंग तरीकों की तुलना में कम ऊर्जा खर्च करते हुए एक बेहतर विकल्प प्रचान करता है।

EV Batteries: MIT वर्ल्ड पीस यूनिवर्सिटी के रिसर्चर ने तैयार किया बैटरी को ठंडा करने वाला सिस्टम, ऐसे मिलेगा फायदा

Researchers Develop Passive Cooling System for EV

Batteries: MIT वर्ल्ड पीस यूनिवर्सिटी (MIT-WPU), पुणे के शोधकर्ताओं ने इलेक्ट्रिक वाहन (EV) की बैटरी के लिए एक नया पैसिव हाइब्रिड कूलिंग सिस्टम विकसित किया है। इसे भारत में "सिस्टम फॉर धर्मल मैनेजमेंट ऑफ बैटरी ऑफ व्हीकल" (पेटेंट नंबर 202121029238) के नाम से पेटेंट मिला है-जो इलेक्ट्रिक वाहन (EV) बैटरियों को ठंडा रखने की क्षमता को काफी बेहतर बनाता है। प्रदर्शन और सुरक्षा दोनों को बढ़ाने के उद्देश्य से डिज़ाइन किया गया यह सिस्टम, भारत के उच्च तापमान वाली जलवायु परिस्थितियों तथा EV में आग लगने की बढ़ती घटनाओं जैसी चुनौतियों का प्रभावी समाधान प्रदान करता है।

MIT-WPU ના સંશોધકોએ EV બેટરીમાં ઓવરહિટીંગ રોકવા અને આગ લાગતી અટકાવવા માટે હાઇબ્રિડ નેનોફ્લુઇડ કૂલિંગ સિસ્ટમ વિકસાવી

MIT વર્લ્ડ પીસ યુનિવર્સિટી ઉચ્ચ આસપાસના તાપમાન અને (MIT-WPU), પુણેનાસંશોધકોદ્વારા ઝડપથી વધતા EV વપરાશ સાથે પેટન્ટ કરવામાં આવેલ એક નિષ્કિય - અમારી સમક્ષ પડકાર માત્ર કામગીરી હાઇબ્રિડ કૂલિંગ સિસ્ટમ વિકસાવવામાં વિશે નથી, પણ સુરક્ષા વિશે પણ છે. આવી છે અને તે ભારતીય પેટન્ટ અમારી આ નિષ્ક્રિય હાઇબ્રિડ ઠંડક "સિસ્ટમ ફોર થર્મલ મેનેજમેન્ટ ઓફ પ્રણાલી એસનિશ્ચિત કરેછે કે બેટરી પેક બેટરી ઓફ વ્હીકલ" (પેટન્ટ નંબર - વાહનની સિસ્ટમમાંથી પાવર ખેંચ્યા ૨૦૨૧૨૧૦૨૯૨૩૮) હેઠળ મંજર - વિનાસલામતથર્મલ મર્યાદામાં રહે છે. કરવામાં આવી છે અને આ ઇલેક્ટિક જેનાથી વિશ્વસનીયતા અને કાર્યકારી વાહન (EV) બેટરીમાં થર્મલ કાર્યક્ષમતા બંનેમાં વધારો થાય છે." મેનેજમેન્ટમાં નોંધપાત્ર રીતે વધારો કરે છે. બેટરીની કામગીરી અને સુરક્ષાબંનેમાં તેનો ઉદ્દેશ્ય હાલની તકનીકોને ઉન્નત સુધારો કરવા માટે, આ સિસ્ટમ કરવાનો છેઃ "અમારું લક્ષ્ય સક્રિય પરિસ્થિતિઓ અને ઈક માં લાગતી અને વિશ્વસનીયતા વધારવાનો છે. જે આગની વધતી જતી ઘટનાઓ જેવા ક્ચારેક નિષ્ફળ થઈ શકે છે અથવા પડકારોનો સામનો કરવા માટે છે.

દેશમુખ, એસોસિયેટ પ્રોફેસર, વધતીજતીઆગનાજોખમનીચિંતાઓ મિકેનિકલ એન્જિનિયરિંગ વિભાગ; માટે અમે એક મજબૂત ઉકેલ તૈયાર ડૉ. એસ. રાધાકૃષ્ણન, પ્રોફેસર કરવા ઇચ્છતા હતા." એમેરિટસ અને ડિરેક્ટર રિસર્ચ. મટિરિયલ્સ સાયન્સ એન્ડ ઉજ્ઞત નેનોફ્લુઇડને હીટ-પાઇપ એન્જિનિયરિંગ: અને ડૉ. વૈદેહી આર્કિટેક્ચર સાથે સંકલિત કરીને અને દેશમુખ, આસિસ્ટન્ટ પ્રોફ્રેસર, પંપઅથવાપંખાદુરકરીનેઅમેOEM ઇલેક્ટ્રિકલ અને ઇલેક્ટ્રોનિક્સ માટેબેસૌથી મોટા પડકારોનો સામનો એન્જિનિયરિંગ વિભાગ સામેલ છે. કર્યો છે: ઊર્જા ઓવરહેડ અને થર્મલ

સમજાવતા, ડૉ. વૈભવ દેશમુખે કહ્યું કે, EVs ની સલામતીને નોંધપાત્ર રીતે "ભારત દેશમાં રહેતા વાતાવરણમાં - મજબૂત બનાવે છે."

ડૉ. એસ. રાધાકપ્રશને જણાવ્ય કે ઉચ્ચ-તાપમાનની યાંત્રિક ઘટકોને દર કરીને સલામતી વધારાની ઉર્જા વાપરી શકે છે. અને આ સંશોધન ટીમમાં ડૉ. વૈભવ ઉચ્ચ તાપમાન દરમિયાન બજારોમાં

ડૉ. વૈદેહી દેશમખે કહ્યું કે: "થર્મલ આ સફળતાનું મહત્વ હોટસ્પોટ્સ.આભારતજેવાબજારોમાં

હિલ્ડા ભાક્સ્ટર

એમઆઇટી- ડબ્લ્યુપીયુની નવી પ્રણાલી

એમઆઈટી વર્લ્ડ પીસ યુનિવર્સિટી પુશે દ્વારા પેટન્ટેડ પેસિવ હાઈબ્રિડ કુલિંગ સિસ્ટમ વિકસાવી છે, જેને ભારતીય પેટન્ટ સિસ્ટમ ફોર થર્મલ મેનેજમેન્ટ ઓફ બેટરી ઓફ વેહિકલ હેઠળ આ દરજ્જો મળ્યો હોઈ ઈવી બેટરીઓમાં થર્મલ મેનેજમેન્ટે નોંધપાત્ર રીતે બહેતર બનાવે છે. તે પરફોર્મન્સ અને સેફ્ટીમાં સુધારણા કરે છે.

Chronicle

MIT-WPU Develops Hybrid Nanofluid System to Prevent EV Battery Fire

Patent-Backed Hybrid Cooling Stops EV Overheating, Boosts Two-Wheeler Battery Life Pune: In a major breakthrough for electric vehicle (EV) safety, researchers at MIT World Peace University (MIT-WPU), Pune, have developed a patented, passive hybrid cooling system that drastically mitigates the risk of battery overheating and fire, especially under India's challenging high-temperature conditions.

The innovation, granted under an Indian patent, is a pump-free thermal management architecture that synergizes high-efficiency heat pipes with a custom-engineered nanofluid.

The fluid, enhanced with thermally conductive nanoparticles, allows for rapid heat extraction via natural convection and phasechange processes, eliminating the need for energy-drawing pumps or

fans.

The research team, comprising Dr. Vaibhay Deshmukh, Dr. S. Radhakrishnan, and Dr. Vaidehi Deshmukh, designed the system to be a scalable, energy-independent solution for two-wheeler EVs, which dominate the Indian market.

By maintaining stable battery temperatures, the technology not only enhances user safety but also significantly improves battery lifespan and charging efficiency.

पुणे : पुढारी वृत्तसेवा प्रमुआयरी बर्ल्ड पीम यनिव्हर्सिटीच्या संशोधकांनी वाहनाच्या बॅटरीसाठी धर्मल मॅनेजमेंट सिस्टिम या भारतीय पेटंटअंतर्गत मान्यता मिळालेली पॅसिव्ह हायब्रिड कुलिंग सिस्टिम विकसित केली आहे. ही सिस्टिम ईव्ही बॅटरीतील धर्मल व्यवस्थापन मोठ्या प्रमाणात सधारते. कार्यक्षमता आणि सरक्षितता वाढवण्यासाठी विकसित केलेल्या या तंत्रज्ञानामळे ईव्हीला आग लागण्याच्या वाढत्या प्रसंगांमळे निर्माण होणाऱ्या आव्हानांवर मात करता येणे शक्य होणार आहे.

। एमआयटीच्या संशोधकांचे यश

या टीमने पॅसिव्ह हायबिड कलिंग आर्किटेक्चर विकसित केले आहे. यात उच्च कार्यक्षमतेचे हीट पाइप आणि खास तयार केलेल्या नॅनोफ्लइडची सांगड घालण्यात आली आहे

या संशोधकांच्या टीममध्ये यांत्रिक अभियांत्रिकी विभागाचे सहयोगी प्राध्यापक डॉ. बैभव देशमृख, मटेरियल सायन्स अँड इंजिनिअस्मि विभागाचे प्रोफेसर एमेरिटस आणि डायरेक्टर (रिसर्च) डॉ. एस. राघाकृष्णन आणि इलेक्ट्रिकल अँड इलेक्ट्रॉनिक्स अभियांत्रिकी विभागाच्या सहाय्यक

प्राध्यापिका डॉ. वैदेही देशमुख यांचा

COOLING

SYSTEMS

FOR EVS

पंपविरहित आणि ऊर्जा-कार्यक्षम अमलेले हे तंत्रजान पारंपरिक ईव्ही बॅटरी कलिंग सिस्टिम्सला एक अधिक प्रभावी पर्याय ठरते. या प्रणालीत धर्मली

कंडक्टिक्ट नॅनोपार्टिकल्स आणि लो-बॉईलिंग-पॉइंट लिक्विड्सने सुधारित खास तवार केलेल्या नॅनोफ्लइडचा समावेश आहे. ज्यामळे बॅटरीतील हॉटस्पॉटसमधील उष्णता अतिशव वेगाने बाहेर काढणे शक्य होते. उच्च

कार्यक्षमतेच्या हीट पाइप्समोबत या नॅनोफ्लइडची सांगड पातल्यामुळे, अत्यंत प्रतिकुल बाताबरणीय तापमानातही बॅटरीचे

थर्मल कंडिशन्स स्थिर राखणे शक्य होते. लिक्विड-बेस्ड ईव्ही कलिंग तंत्रज्ञानांच्या तलनेत ही प्रणाली भारताच्या वातावरणात विशेषतः अनुकूल ठरते.

यासंदर्भात डॉ. वैभव देशमख म्हणाले. 'भारतासारख्या वातावरणीय परिस्थितीत म्हणजे बाताबरणातील बाढते तापमान आणि ईव्हीच्या वापरात बेगाने होणारी वाढ केवळ परफॉरमन्स संदर्भावीलच आव्हान नाही वर सरक्षेला प्राधान्य देणे महत्वाचे आहे. आमच्या पॅसिक्ट बायबीड कलिंग सिस्टिममळे बाहनाच्या यंत्रणेतन बीजपरवढा न घेता बॅटरी पॅक सरक्षित धर्मल मर्वादेत राहती. परिणामी, विश्वासाईता व कार्यक्षमता या दोन्हीत वाढ होते.

डॉ. एस. राधाकृष्णन म्हणाले. विद्यमान तंत्रज्ञानापेक्षा एक मोठी झेप घेणे हे उष्टिष्ट होते : 'ॲबिटण्ड मेकॅनिकल घटकांची गरज दर करून सुरक्षितता आणि होते. कारण अशा घटकांमध्ये विघाड होउ शकतो किंवा ते अतिरिक्त ऊर्जा वापरतात. जारत नापपार अपनेतना नानारपेरांपार्ट आणि आगीच्या वातत्वा धोक्यासंदर्भातील चिंता लक्षात घेऊन, त्या परिस्थितींना अनरूप अशी भवकम उपाययोजना वकसित करणे हेच आमचे ध्येय होते.

डॉ. वैदेही देशमख म्हणाल्या, 'धर्मल पद्धतीने सुधारणा केलेले नॅनोफ्लुइड आणि हीट पाइप आर्किटेक्चर यांची सांगड घालून म्हणजे पंप किंवा पंखे काढन टाकन ओईएमना भेडसावणाऱ्या दोन आव्हानांवर आप्ही मात केली.

MIT-WPU Researchers Develop Passive Cooling System for EV **Batteries**

Patented hybrid system uses nanofluids and heat pipes to address thermal management in hightemperature conditions.

Researchers at MIT World Peace University have developed a passive hybrid cooling system for electric vehicle batteries that operates without pumps or fans, addressing thermal management challenges in India's high-temperature conditions. The system, granted Indian Patent No. 202121029238 under "System for Thermal Management of Battery of Vehicle," combines heat pipes with engineered nanofluids to prevent battery overheating.

The research team comprises Dr. Valbhav Deshmukh, Associate Professor in the Department of Mechanical Engineering; Dr. S. Radhakrishnan, Professor Emeritus and Director Research in the Department of Materials Science and Engineering; and Dr. Vaidehi Deshmukh, Assistant Professor in the Department of Electrical and Electronics Engineering.

The system operates entirely through natural convection and phase-change processes without requiring electrical power. The nanofluid contains thermally conductive nanoparticles and low-boiling-point liquids designed for rapid heat extraction from battery hotspots. When integrated with heat pipes, the system maintains stable thermal conditions in extreme temperatures.

Dr. Vaibhay Deshmukh said, "In an environment such as India's---with high ambient temperatures and rapidly growing EV usage, the challenge isn't just about performance, it is about safety first. Our passive hybrid cooling system ensures that the battery pack remains within safe thermal limits without drawing power from the vehicle's system, thereby enhancing both reliability and operational efficiency."

Researchers at MIT-WPU Develop Hybrid Nanofluid Cooling System to **Prevent EV Battery Overheating and Fires**

by NS - November 27, 2025 in Industry Q 0

Pune: Researchers at MIT World Peace University (MIT-WPU). Pune have developed a patented passive hybrid cooling system—granted under the Indian patent "System for Thermal Management of Battery of Vehicle" (Patent No. 202121029238)—that significantly enhances thermal management in electric vehicle (EV) batteries. Designed to improve both performance and safety, the system addresses the challenges posed by India's hightemperature conditions and rising EV fire incidents.

The research team includes Dr. Vaibhay Deshmukh, Associate Professor, Department of Mechanical Engineering; Dr. S. Radhakrishnan, Professor Emeritus & Director Research, Department of Materials Science and Engineering; and Dr. Vaidehi Deshmukh, Assistant Professor, Department of Electrical and Electronics Engineering. They designed a hybrid passive cooling architecture that combines highefficiency heat pipes with a specially engineered nanofluid, offering a pump-free, energy-efficient alternative to conventional EV battery cooling systems

What makes this patented innovation particularly unique is its fully passive hybrid cooling mechanism that operates entirely through natural convection and phase-change processes-without the use of pumps, fans or any additional electrical power. The integration of a custom-engineered nanofluid, enhanced with thermally conductive nanoparticles and low-boiling-point liquids, enables rapid heat extraction from battery hotspots. When paired with high-efficiency heat pipes, the system maintains stable thermal conditions even in extreme environmental temperatures, providing a high-reliability, energy-independent and inherently safer alternative to current air- or liquid-based EV cooling technologies, making it especially suited to India's climatic conditions

MIT-WPU Researchers Develop Hybrid Nanofluid Cooling System To Prevent EV Battery Overheating And Fires

Patent-backed hybrid cooling system combines nanofluids and heat pipes to prevent battery overheating and reduce EV fire risks in Indian conditions.

Researchers at MIT World Peace University (MIT-WPU), Pune have developed a patented passive hybrid cooling system—granted under the Indian patent "System for Thermal Management of Battery of Vehicle" (Patent No. 202121029238)—that significantly enhances thermal management in electric vehicle (EV) batteries. Designed to improve both performance and safety, the system addresses the challenges posed by India's high-temperature conditions and rising EV fire incidents.

The research team includes Dr. Vaibhav Deshmukh, Associate Professor, Department of Mechanical Engineering; Dr. S. Radhakrishnan, Professor Emeritus & Director Research, Department of Materials Science and Engineering; and Dr. Vaidehi Deshmukh, Assistant Professor, Department of Electrical and Electronics Engineering. They designed a hybrid passive cooling architecture that combines high-efficiency heat pipes with a specially engineered nanofluid, offering a pump-free, energy-efficient alternative to conventional EV battery cooling systems.

EV व्हीकल्स में आग लगने का खतरा कम होगा: MIT वर्ल्ड पीस यूनिवर्सिटी ने तैयार किया एडवांस कूलिंग सिस्टम, बैटरी ओवरहीट नहीं होगी

टेक डेस्क। इलेक्ट्रिक व्हीकल्स (EV) में आग लगने की बढ़ती घटनाओं के बीच एक राहत की खबर सामने आई है। पुणे स्थित MIT वर्ल्ड पीस यूनिवर्सिटी (MIT-WPU) के रिसर्चर्स ने EV बैटरियों को ज्यादा गर्म होने से बचाने के लिए खास पैसिव हाइब्रिड कूलिंग सिस्टम डेवलप किया है। जिसे पेटेंट भी मिल चुका है।

इस तकनीक को 'सिस्टम फॉर थर्मल मैनेजमेंट ऑफ बैटरी ऑफ व्हीकल' नाम दिया गया है। इसका पेटेंट नंबर 202121029238 है। यह सिस्टम खासतौर पर भारत के क्लाइमेट को ध्यान में रखकर तैयार किया गया है।

कैसे काम करता है EV कूलिंग सिस्टम

इस नई तकनीक की सबसे बड़ी खासियत है कि यह पूरी तरह पैसिव सिस्टम है। इसमें पंप, पंखे और न किसी अतिरिक्त बिजली की जरूरत पड़ती है। यह सिस्टम नैनोफ्लूइड और हीट पाइप्स के कॉम्बिनेशन से वर्क करता है। इसमें खास तरह के थर्मल नैनोपार्टिकल्स मिले होते हैं, जो बैटरी के गर्म हिस्सों से तेजी से गर्मी सोख कर बाहर निकालते हैं। यह कूलिंग प्रोसेस नेचुरल एयर और फेज-चेंज टेक्नोलॉजी के जिरए होती है। जिससे बैटरी का टेम्परेचर स्थिर बना रहता है।

EV युजर्स के लिए क्या फायदे हैं

यह सिस्टम खासतौर पर EV स्कूटर्स और बाइक के लिए उपयोगी साबित हो सकता है। इस पेटेंटेड तकनीक से यूजर्स को कई बड़े फायदे मिलेंगे-

വൈദ്യുത വാഹന (ഇ.വി) ബാറ്ററി അമിതമായി ചൂടാകുന്നത് തടയുന്ന സങ്കേതികവിദ്യാ സംവിധാനത്തിനൊഷം ഗവേഷകർ

ഇ.വി ബാറ്ററി ചൂടാകുന്നത് തടയാൻ ഉപകരണം

കൊച്ചി: വൈദ്യത വാഹന (ഇ.വി) ബാറ്ററി അമിതമായി ച്ച ടാകുന്നത് തടയാൻ ഹൈബ്രി ഡ്നാനോഫ്ളയിഡ് കൂളിംഗ് സിസ്റ്റം സാങ്കേതികവിദ്യ എം. ഐ.ടി വേൾഡ് പീസ് യൂണി വേഴ്സിറ്റിയിലെ ഗവേഷകർ വികസിഷിച്ച.

ഇന്ത്യയിലെ ഉയർന്ന താ

പനിലയ്ക്ക് അനയോജ്യമാ യി ത്രപകൽഷന ചെയ്ത സാ കേതികവിദ്യ, നാനോഫ്ള്ലയി ഡുകളും ഹീറ്റ് പൈഷ്യകളും സം യോജിഷിച്ചാണ് പ്രവർത്തി ക്കുന്നത്. പമ്പുകളോ ഫാന കളോ ഇല്ലാതെ പ്രകൃതിദത്ത മായ സംവഹനത്തിലൂടെയും ഫേസ്ചേഞ്ച് പ്രക്രിയയിലൂടെ യും താപം പുറന്നള്ളുന്ന സം വിധാനം, ബാറ്ററിയുടെ ആയു സും ചാർജിംഗ് കാര്യക്ഷമത യും സുരക്ഷയും വർദ്ധിപ്പിക്കു നും. ഡോ. വൈദവ് ദേശ്മുഖ്, ഡോ. എസ്. രാധാക്വപ്പൻ, ഡോ. വൈദേഹി ദേശ്മുഖ് എ ന്നിവര്ദ്ശേക്വട്ട് സംഘമാണ് കണ്ടുപിടിച്ചത്.